Proactive management of dissolved organic carbon in catchments to mitigate climate change impacts on trihalomethanes formation in water treatment

Lead Research Organisation: Newcastle University
Department Name: Sch of Engineering

Abstract

Climatic conditions are changing, which affects dissolved organic carbon (DOC) in surface water. DOC is a precursor for the formation of unwanted disinfection by-products (DBPs) in drinking water treatment, which includes trihalomethanes (THMs). Scenarios for climate change impacts on THM formation suggest a 39% increase by 2050 for the British Isles unless treatment is adapted. This PhD project, led by Newcastle University, is in collaboration with Northumbrian Water, and will research proactive management of DOC in catchments to reduce loads into reservoirs and treatment works. Proactive management of DOC in catchments addresses the root cause of the THM challenge and reduces the costs, chemical and energy demands, and environmental impacts of water treatment. The project will review and evaluate nature-based mitigation measures for rising DOC in a case study catchment to develop and validate a catchment-scale DOC monitoring, modelling and management tool. The fieldwork will involve innovative monitoring tools to study DOC loads and characteristics with real-time sensing of water quality, incl. fluorescent dissolved organic matter (FDOM). This will build on experience with real-time water quality sensing systems of the National Green Infrastructure Facility and Newcastle University's Urban Observatory. The fieldwork will inform the development of a model for DOC management in catchments and in reservoirs to inform abstraction management and engagement with landowners. The project thus seeks to demonstrate a smart water infrastructure solution that combines sensing and modelling with nature-based approaches for climate change resilience and water security.

Planned Impact

Graduates from the WRIC programme will produce new knowledge across the disciplinary landscape and graduate to occupy professional roles of influence and authority which require a thorough understanding of the pathways by which knowledge and technology are adopted and put to socially significant use. The people and knowledge delivered through the CDT will improve the efficiency and effectiveness of the nation's >£5bn annual spend on water and water related infrastructure (OFWAT, 2017), improving its resilience and securing its value for society for generations to come. With ambitions to nurture domain experts who can flourish at the interfaces of scientific disciplines and economic/industry sectors, the impact imperative is a significant but stimulating challenge for the WRIC CDT. Our impact strategy seeks to; (i) ensure rapid dissemination of scientific insights, (ii) maximise awareness and uptake of research sponsored through the CDT, and (iii) improve professional and lay understandings of the water infrastructure challenges facing society and the science behind candidate solutions. This strategy has been developed with project and Centre stakeholders so as to leverage additional resources, and maximise impact.
Improving the resilience of water infrastructure systems will be of benefit to a wide range of stakeholders. Given the CDT's bold intention to tackle knowledge gaps at the interfaces between disciplines and problems, new scientific understandings generated through WRIC will be of value to the knowledge users in the public sector (local authorities, regulators) and private sector (utilities, consultancies, technology providers), ultimately benefiting both lives and livelihoods across the UK and beyond. The UK economy will benefit from robust and resilient water infrastructure, in-line with the UK Government's Industrial Strategy for cleaner economic growth, the efficient use of resources, and building a regenerative circular economy. In the next Price Review PR19 (2020-25), water companies will be financially rewarded for implementing enhanced system resilience and innovation. Research outputs from WRIC will enable water companies to be able to meet these demands, alongside ambitious industry targets for zero water and wastewater quality failures, demand reduction and chemical recycling (OFWAT, 2017; UKWIR, 2017). These developments will facilitate inward international investment, development of new technology providers and supply chains, and opportunities for exporting intellectual property and know-how worldwide, further benefiting the UK economy. Project partners, including Thames Water, Severn Trent Water, Atkins, Stantec, Datatecnics also benefit from access to high quality graduates and facilities. Furthermore, regulatory agencies (Environment Agency, Drinking Water Inspectorate) and the European Commission will see benefits from improved compliance to regulations and sustainability agendas (Water Framework Directive 2008/32/EC and Drinking Water Directive 2017/0332(COD)).
The CDT programme will benefit the UK Collaboratorium for Research on Infrastructure and Cities (UKCRIC) government investments (£138M). Sheffield, Cranfield and Newcastle Universities have all received capital grants through UKCRIC to fund industrial scale test facility and observatory facilities to form an Urban Water Hub. The CDT will supply the resources to use and maximise the benefits and outputs from these facilities. Cooperation with other UKCRIC CDTs will help students better understand contemporary challenges for infrastructure and cities will catalyse horizontal innovation transfer and elevate the transformative potential of WRIC graduates.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023666/1 01/04/2019 30/09/2027
2751381 Studentship EP/S023666/1 30/09/2022 29/09/2026 Ana Amezaga-Kutija