Finite element modelling of the corrosion of stainless steels/CuCrZr for STEP

Lead Research Organisation: Imperial College London
Department Name: Materials

Abstract

The STEP programme roadmap is very tight, with a need to down select materials in the next few years, before build can begin in 2032, if the programme is to deliver by 2040. There is a need to select the materials that will carry coolant to remove reactor heat, which might be stainless steels, as used in many fission plants, and also proposed for ITER, using boronated coolant water.
To achieve the ambitious goals for fusion state-of-the art corrosion modelling capabilities will be needed to support experiments. This project will use phase field approaches embedded in finite element models, being developed at Imperial College, jointly by the Martinez-Paneda and Wenman groups to model corrosion development (including microstructure, electrolyte ion concentrations, pit nucleation and growth and transition to stress corrosion cracks). The work will use either or both the COMSOL and ABAQUS finite element codes. The current models build on the work of Turnbull et al. (2008). that showed that pit growth in stainless steels can be explained by the development of plastic strains at the pit sides that lead to oxide fracture and increase the corrosion rate of the underlying metal. These models have very recently been enhanced further to by addition of electrolyte ion concentrations and thus can be used to model a range of coolant chemistries and then can be further advanced by addition of microstructure via crystal plasticity approaches allowing the effects of localised stress/strains, due to crystal orientation, to be considered in the corrosion process. The models, whilst initially tested on stainless steels can be developed further/adapted to other coolant/materials combinations such as CuCrZr or martensitic/ferritic steels as proposed for STEP.

Planned Impact

It cannot be overstated how important reducing CO2 emissions are in both electricity production for homes and industry but also in reducing road pollution by replacing petrol/diesel cars with electric cars in the next 20 years. These ambitions will require a large growth in electricity production from low carbon sources that are both reliable and secure and must include nuclear power in this energy mix. Such a future will empower the vision of a prosperous, secure nation with clean energy. To do this the UK needs more than 100 PhD level people per year to enter the nuclear industry. This CDT will impact this vision by producing 70, or more, both highly and broadly trained scientists and engineers, in nuclear power technologies, capable of leading the UK new build and decommissioning programmes for future decades. These students will have experience of international nuclear facilities e.g. ANSTO, ICN Pitesti, Oak Ridge, Mol, as well as a UK wide perspective that covers aspects of nuclear from its history, economics, policy, safety and regulation together with the technical understanding of reactor physics, thermal hydraulics, materials, fuel cycle, waste and decommissioning and new reactor designs. These individuals will have the skill set to lead the industry forward and make the UK competitive in a global new build market worth an estimated £1.2tn. Equally important is reducing the costs of future UK projects e.g. Wylfa, Sizewell C by 30%, to allow the industry and new build programme to grow, which will be worth £75bn domestically and employ tens of thousands per project.

We will deliver a series of bespoke training courses, including on-line e-learning courses, in Nuclear Fuel Cycle, Waste and Decommissioning; Policy and Regulation; Nuclear Safety Management; Materials for Reactor Systems, Innovation in Nuclear Technology; Reactor Operation and Design and Responsible Research. These courses can be used more widely than just the CDT educating students in other CDTs with a need for nuclear skills, other university courses related to nuclear energy and possibly for industry as continual professional development courses and will impact the proposed Level 8 Apprenticeship schemes the nuclear industry are pursuing to fill the high level skills gap.

The CDT will deliver world-class research in a broad field of nuclear disciplines and disseminate this work through outreach to the public and media, international conferences, published journal articles and conference proceedings. It will produce patents where appropriate and deliver impact through start-up companies, aided by Imperial Innovations, who have a track record of turning research ideas into real solutions. By working and listening to industry, and through the close relationships supervisory staff have with industrial counterparts, we can deliver projects that directly impact on the business of the sponsors and their research strategies. There is already a track record of this in the current CDT in both fission and fusion fields. For example there is a student (Richard Pearson) helping Tokamak Energy engage with new technologies as part of his PhD in the ICO CDT and as a result Tokamak Energy are offering the new CDT up to 5 studentships.

Another impact we expect is an increasing number of female students in the CDT who will impact the industry as future leaders to help the nuclear sector reach its target of 40% by 2030.
The last major impact of the CDT will be in its broadening scope from the previous CDT. The nuclear industry needs to embrace innovation in areas such as big data analytics and robotics to help it meet its cost reduction targets and the CDT will help the industry engage with these areas e.g. through the Bristol robotics hub or Big Data Institute at Imperial.

All this will be delivered at a remarkable value to both government and the industry with direct funding from industry matching the levels of investment from EPSRC.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023844/1 01/04/2019 30/09/2027
2764607 Studentship EP/S023844/1 01/10/2022 30/09/2026 Jason Lee