Data-driven modelling of irradiation induced defects in fusion materials

Lead Research Organisation: University of Warwick
Department Name: Physics

Abstract

Summary: The materials used to build a fusion reactor undergo bombardment from high-energy radiation. In the case of metals, irradiation causes the accumulation of dislocation loops which self-organise into complex microstructures, changing the mechanical properties of the material. To predict this phenomenon accurately, new models are needed. This project will therefore focus on developing a new mathematical framework to connect discrete atomistic models of dislocation loops to continuum differential equations. The resulting modelling hierarchy will be applied computationally to predict the evolution of dislocation loop microstructures, providing an assessment of tungsten's suitability for fusion applications.

Background: Dislocations are topological line defects found in crystals, and are the carriers of plasticity in metals i.e. irreversible deformation. The discovery of dislocations was a key scientific achievement of the 20th century, providing an explanation of the mechanism by which humanity has been able to work metals for thousands of years. As such, understanding how dislocations behave in a metal sample is crucial to understanding how it may deform, crack and fail. A key complexity in studying dislocations is their number: a single cubic centimetre of tungsten may contain on the order of 10,000km of dislocation line. Moreover, dislocations interact in a complex non-local fashion through stress fields in the material. Mathematical theories to describe this have been developed over the last 60 years, and this project seeks to exploit some of these advances in a new setting (see references below).

In fusion material in particular, materials are exposed to bombardment by high-energy radiation, taking them out of the usual equilibrium setting. This is a completely new frontier in materials engineering, and so new mathematical and computational models are in development in this setting. Using the computational and mathematical methodologies which are developed in HetSys training, the student working on this project will study the physical properties of Tungsten, and use this along with experimental data to develop a new modelling hierarchy for dislocation loop microstructures. A possible direction we will explore in the project is to take a discrete model of dislocation loop interaction and pass to a continuum limit for a density of loops, allowing efficient computation of statistics for comparison with experimental data.

Planned Impact

Impact on Students. The primary impact will be on the 50+ PhD students trained by the Centre. They will be high-quality computational scientists who can develop and implement new methods for modelling complex systems in collaboration with scientists and end-users, who are comfortable working in interdisciplinary environments, have excellent communication skills and be well prepared for a wide range of future careers. The students will tackle and disseminate results from exciting PhD projects with strong potential for direct impact. Exemplar research themes we have identified together with our industrial and international partners: (i) design of electronic devices, (ii) catalysis across scales, (iii) high-performance alloys, (iv) direct drive laser fusion, (v) future medicine exploration, (vi) smart nanofluidic interfaces, (vii) composite materials with enhanced functionality, (viii) heterogeneity of underground systems.

Impact on Industry. Students trained by HetSys will make a significant impact on UK industry as they will be ideally prepared for R&D careers to help to address the skills shortage in science and engineering. They will be in high demand for their ability to (i) work across disciplines, (ii) perform calculations that come along with error estimates, and (iii) develop well-designed software that other researchers can readily use and modify which implements novel solutions to scientific problems. More generally, incorporating error bars into models to take account of incomplete data and insufficient models could lead to significantly enhanced adoption of materials modelling in industry, reducing trial and error, and costly/time-consuming R&D procedures. The global market for simulation software is expected to more than double from now to 2022 indicating a very strong absorptive capacity for graduates. Moreover, a recent European Materials Modelling Consortium report identified a typical eight-fold return on investment for materials modelling research, leading to cost savings of 12M Euros per industrial project.

Impact on Society. Scarcity of resources and high energy requirements of traditional materials processing techniques raise ever-increasing sustainability concerns. Limitations on jet engine fuel efficiency and the difficulties of designing materials for fusion power stations reflect the social and economic cost of our incomplete knowledge of how complex heterogeneous systems behave. High costs of laboratory investigations mean that theory must aid experiment to produce new knowledge and guidance. By training students who can develop the new methodology needed to model such issues, HetSys will support society's long term need for improved materials and processes.

There will also be a direct impact locally and regionally through engagement by HetSys in outreach projects. For example we will encourage CDT students to be involved with annual 'Inspire' residential courses at Warwick for Year 11 girls, which will show what STEM subjects are like at degree level. CDT students will present highlights from projects to secondary-school pupils during these courses and also visit local schools, particularly in areas currently under-represented in the student body, in coordination with relevant professional bodies.

Impact on collaboration. Our international partners have identified the same urgent challenges for computational modelling. We will build flourishing links with research institutes abroad with long term benefit on UK research via our links to computational science networks. Shared research projects will strengthen links between academic staff and industry R&D personnel and across disciplines. The work will also lead to accessible, robust and reusable software. The Centre will achieve cross-disciplinary academic impact on the physical and materials sciences, engineering, manufacturing and mathematics communities at Warwick and beyond, and on the generation of new ideas, insights and techniques.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022848/1 01/04/2019 30/09/2027
2826265 Studentship EP/S022848/1 03/10/2022 30/10/2026 Joseph Duque-Lopez