3D printing of edible biomimetic scaffolds for the engineering of animal muscle tissue

Lead Research Organisation: Aston University
Department Name: College of Health and Life Sciences

Abstract

The demand for animal-based foods will increase by 70% in 2050 to meet the 22.5% growth in global population. Yet, 800 million people worldwide already suffer from hunger and malnutrition, and the livestock industry contributes 12-18% of the world's annual greenhouse gas emissions. Cultivated' meat is an alternative way to produce meat which is safer and kinder to the animals and the planet compared to traditional methods. Replicating meat in vitro, however, is very challenging because of the complex nature of the final product. Furthermore, cultivated meat needs to match the organoleptic properties of conventionally produced meat in order to gain consumer acceptance. Additive manufacturing using 3D printing has already been explored in tissue engineering for the creation of artificial tissues and organs and therefore holds promise for the fabrication of scaffolds to support the formation of structured cultivated meat products. There are two different approaches to 3D printing in this context: (a) building porous acellular 3D structures which are seeded with cells post-printing; and (b) direct bioprinting of cell-laden biomaterials. Although 3D bioprinting can achieve accurate cell distribution, designing a suitable bioink is not an easy task. This project aims to combine edible polymers and 3D printing to create a scaffold material which possess structural and mechanical properties that support and maintain cellular viability and function, with the production of whole cut cultivated meat as the ultimate goal.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S02347X/1 01/07/2019 31/12/2027
2887956 Studentship EP/S02347X/1 01/10/2023 30/09/2027 Louis Hutchings