📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Deciphering the molecular basis of amylin receptor-mediated satiation as an obesity treatment

Lead Research Organisation: University of Cambridge
Department Name: Pharmacology

Abstract

BBSRC strategic theme: Bioscience for an integrated understanding of health

Amylin is secreted from pancreatic islet Betha-cells and has potent effects on gastric emptying and food intake. Pramlintide, a nonamyloidogenic analogue of human amylin is approved for the treatment of type-1 and type-2 diabetes in combination with insulin. However, amylin analogues have been shown to promote satiation leading to significant weight loss. Moreover, when co-administered with other weight losing agents (e.g. GLP-1) synergistic effects have been observed. Accordingly, there is significant interest in the development of new amylin analogues to treat obesity and co-morbidities. Amylin effects on satiation are localized to amylin receptors in the area postrema and involve the AMY3R, a heteromer of the calcitonin receptor (CTR) and receptor activity-modifying protein 3 (RAMP3).

Pharmaceutical company drug discovery programmes have previously identified novel agonistic peptides that showed both amylin peptide-like (significantly higher efficacy towards the AMY3R (RAMP3+CTR) over the CTR) and balanced dual agonist properties. These have been identified measuring peptide-induced cAMP accumulation (the AMY3R and CTR are both Gs-coupled GPCRs whose activation leads to increased intracellular cAMP). This studentship will determine the molecular determinates that govern AMY3R agonist selectivity. To achieve this, we will use a multidisciplinary approach combining in silico approaches like free energy calculations and molecular dynamic simulations, molecular pharmacology techniques (including fluorescent ligand binding, and G protein selectivity assays, and receptor isoform selectivity assays) supported by peptide synthesis and in vivo translation in models of acute food intake and obesity. Our data will provide a new rational for amylin receptor drug discovery.

People

ORCID iD

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
BB/X010899/1 30/09/2023 29/09/2028
2888775 Studentship BB/X010899/1 30/09/2023 29/09/2027