Relating changes in melt genesis to dynamic conditions of the demise of a continental arc: Antarctic Peninsula arc

Lead Research Organisation: University of Leicester
Department Name: Sch of Geog, Geol & the Environment

Abstract

The poorly understood Antarctic Peninsula volcanic arc was an active continental margin between the Early Late Jurassic and the Early Miocene. Although many expeditions have visited parts of the arc, and the northern end of the arc has been well-studied, there are vast tracts of the arc for which there are either no geochronological constraints or geochemical investigations of the arc development. A recent study of the available data (Leat and Riley, 2018) found four chemically distinct volcanic groups within the arc: calc-alkaline, high-Mg andesites, adakites and a peralkaline high-Zr group. However, few constraints between the groups are known, including their timing within arc development and their relation to each other, and what their significance was to the changing margin dynamics of the time. The Leat and Riley (2018) study has highlighted the perhaps unusual feature of numerous high-Mg andesites within the arc, but the significance of this is uncertain due to a lack of geochronological controls. A migration of the arc toward the trench is indicated to have occurred during the Cretaceous, but is also very poorly constrained due to the lack of age data. New isotopic ages will constrain the changing melt conditions along and across the arc and will be linked into the development of geodynamic models for the area.
This project will take advantage of the exceptional collection of samples held by the British Antarctic Survey and access to it through BAS scientist Dr Riley. Furthermore, the link between UoL and BAS will be enhanced by two honorary Leicester scientists Drs Leat and Smellie who have formerly been BAS-scientists and whom collected many of the legacy samples. The aim of this project will be to learn how the high-Mg andesites and adakites fit into the development of the Antarctic Peninsula arc, what the controls their genesis, and what this tells us about the changing conditions of melt production along the Antarctic Peninsula arc during its life cycle of development and demise.
The project will suit a student interested in geochemistry and geochronology, taking apart a poorly explored region, and with a keen interest in petrogenesis and arc magmatism.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
NE/S007350/1 01/10/2019 30/09/2027
2899697 Studentship NE/S007350/1 01/10/2023 31/03/2027 Katie Baumber