UK Biobank (core renewal)
Lead Research Organisation:
UK Biobank
Department Name: UNLISTED
Abstract
UK Biobank is supported by The Wellcome Trust, The National Institute of Health Research, The Medical Research Council, The British Heart Foundation and Cancer Research UK. The figures presented on this record represent the Medical Research Council funding contribution only with some additional UKRI Infrastructure funds in addition.
UK Biobank is a prospective study of 500,000 men and women aged 40-69 years at the point of recruitment (2006-10). The study has collected extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, accelerometery, imaging, genome-wide genotyping and long-term longitudinal follow-up for a wide range of health-related outcomes. The resource is regularly augmented with additional data and is available to academic or commercial researchers world-wide to use for any type of health-related research that is in the public interest. It has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. The ongoing identification and adjudication of increasing numbers of incident cases of the commoner conditions in the resource will support extensive and powerful research into their determinants and the range of diseases that can be studied reliably will widen as the numbers of incident events of different types increase during follow-up over the next 5-10 year period. As a result, UK Biobank provides researchers from around the world with greater opportunities to better understand early disease stages and their diagnosis, and can support the development of new treatments for diseases of mid-to-later life.
UK Biobank is a prospective study of 500,000 men and women aged 40-69 years at the point of recruitment (2006-10). The study has collected extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, accelerometery, imaging, genome-wide genotyping and long-term longitudinal follow-up for a wide range of health-related outcomes. The resource is regularly augmented with additional data and is available to academic or commercial researchers world-wide to use for any type of health-related research that is in the public interest. It has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. The ongoing identification and adjudication of increasing numbers of incident cases of the commoner conditions in the resource will support extensive and powerful research into their determinants and the range of diseases that can be studied reliably will widen as the numbers of incident events of different types increase during follow-up over the next 5-10 year period. As a result, UK Biobank provides researchers from around the world with greater opportunities to better understand early disease stages and their diagnosis, and can support the development of new treatments for diseases of mid-to-later life.
Technical Summary
The UK Biobank resource has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. There are now sufficient numbers of incident cases of the commoner conditions to support extensive and powerful research into their determinants.
There is regular augmentation of UK Biobank’s capability for effective use as a prospective resource by the widest possible range of researchers. This activity has included: streamlining resource access management systems; imaging assessments; an agile response to the SARS-2 Covid pandemic; ‘omics; whole genome sequencing and turning biological samples into genotypic and biomarker data to make the resource more accessible to researchers studying a wide range of different conditions.
During the next few years, it is intended to develop UK Biobank as a UK national infrastructure and the resource will move to new premises at the University of Manchester where sample throughput will be accelerated with new robotics and freezer systems, making more large scale studies possible. UK Biobank will make increasing amounts of genotype and biomarker data available. It will seek to extend cohort-wide record linkage to primary care health; develop other linkages relevant to health; complete imaging assessments on close to 100,000 participants, including repeat imaging on a subset; develop and implement further enhancements (such as metabolomics) and introduce changes relating to participant involvement and to address equality diversity and inclusion. Communications will be expanded to a wider audience to help ensure that researchers from around the world are well informed about UK Biobank’s enhanced capabilities in order to maximise suitable use of the resource over the next few years.
There is regular augmentation of UK Biobank’s capability for effective use as a prospective resource by the widest possible range of researchers. This activity has included: streamlining resource access management systems; imaging assessments; an agile response to the SARS-2 Covid pandemic; ‘omics; whole genome sequencing and turning biological samples into genotypic and biomarker data to make the resource more accessible to researchers studying a wide range of different conditions.
During the next few years, it is intended to develop UK Biobank as a UK national infrastructure and the resource will move to new premises at the University of Manchester where sample throughput will be accelerated with new robotics and freezer systems, making more large scale studies possible. UK Biobank will make increasing amounts of genotype and biomarker data available. It will seek to extend cohort-wide record linkage to primary care health; develop other linkages relevant to health; complete imaging assessments on close to 100,000 participants, including repeat imaging on a subset; develop and implement further enhancements (such as metabolomics) and introduce changes relating to participant involvement and to address equality diversity and inclusion. Communications will be expanded to a wider audience to help ensure that researchers from around the world are well informed about UK Biobank’s enhanced capabilities in order to maximise suitable use of the resource over the next few years.
Organisations
- UK Biobank (Lead Research Organisation)
- AbbVie Inc (Collaboration)
- AstraZeneca (Collaboration)
- Alnylam Pharmaceuticals (Collaboration)
- Regeneron Pharmaceuticals, Inc. (Collaboration)
- Pfizer Inc (Collaboration)
- Takeda Pharmaceutical Company (Collaboration)
- Bristol-Myers Squibb (Collaboration)
- Biogen Idec (Collaboration)
- GlaxoSmithKline (GSK) (Collaboration)
People |
ORCID iD |
| Rory Collins (Principal Investigator) |
Publications
Pillinger T
(2023)
Effect of polygenic risk for schizophrenia on cardiac structure and function: a UK Biobank observational study.
in The lancet. Psychiatry
Pinaya WHL
(2021)
Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer's disease in a cross-sectional multi-cohort study.
in Scientific reports
Pinaya WHL
(2022)
Unsupervised brain imaging 3D anomaly detection and segmentation with transformers.
in Medical image analysis
Pinese M
(2020)
The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly.
in Nature communications
Pinto Pereira SM
(2023)
Linear and Nonlinear Associations Between Vitamin D and Grip Strength: A Mendelian Randomization Study in UK Biobank.
in The journals of gerontology. Series A, Biological sciences and medical sciences
Pinto Pereira SM
(2022)
Adiposity and grip strength: a Mendelian randomisation study in UK Biobank.
in BMC medicine
Pirastu N
(2021)
Genetic analyses identify widespread sex-differential participation bias.
in Nature genetics
Pirastu N
(2022)
Using genetic variation to disentangle the complex relationship between food intake and health outcomes.
in PLoS genetics
Pirruccello J
(2021)
Deep learning enables genetic analysis of the human thoracic aorta
in Nature Genetics
Pirruccello JP
(2022)
Genetic analysis of right heart structure and function in 40,000 people.
in Nature genetics
Pirruccello JP
(2022)
Development of a Prediction Model for Ascending Aortic Diameter Among Asymptomatic Individuals.
in JAMA
Pisanu C
(2021)
Association between migraine prevalence, treatment with proton-pump inhibitors and CYP2C19 phenotypes in UK Biobank.
in Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Pitharouli MC
(2021)
Elevated C-Reactive Protein in Patients With Depression, Independent of Genetic, Health, and Psychosocial Factors: Results From the UK Biobank.
in The American journal of psychiatry
Pividori M
(2019)
ukbREST: efficient and streamlined data access for reproducible research in large biobanks.
in Bioinformatics (Oxford, England)
Planalp EM
(2022)
Is 112 the New 10 000?-Step Count and Dementia Risk in the UK Biobank.
in JAMA neurology
Plotnikov D
(2021)
Genetic Variants Associated With Human Eye Size Are Distinct From Those Conferring Susceptibility to Myopia.
in Investigative ophthalmology & visual science
Plotnikov D
(2021)
Hyperopia Is Not Causally Associated With a Major Deficit in Educational Attainment.
in Translational vision science & technology
Plotnikov D
(2022)
High Blood Pressure and Intraocular Pressure: A Mendelian Randomization Study.
in Investigative ophthalmology & visual science
Poeppl TB
(2022)
Pattern learning reveals brain asymmetry to be linked to socioeconomic status.
in Cerebral cortex communications
Polimanti R
(2022)
Understanding the comorbidity between posttraumatic stress severity and coronary artery disease using genome-wide information and electronic health records.
in Molecular psychiatry
Politis M
(2023)
1310 FRAILTY, LONELINESS AND SOCIAL ISOLATION IN THE UK BIOBANK COHORT
in Age and Ageing
Polkinghorne M
(2022)
Adipose tissue derived ceramides regulate myocardial redox state and predict cardiovascular outcomes
in European Heart Journal
Pombo G
(2023)
Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models.
in Medical image analysis
Porcu E
(2022)
Limited evidence for blood eQTLs in human sexual dimorphism.
in Genome medicine
Portas L
(2020)
Lung Development Genes and Adult Lung Function.
in American journal of respiratory and critical care medicine
Powell L
(2020)
Does a physically active lifestyle attenuate the association between alcohol consumption and mortality risk? Findings from the UK biobank.
in Preventive medicine
Powell MJ
(2020)
Cancer and Cardiovascular Risk in Women With Hypertensive Disorders of Pregnancy Carrying a Common IGF1R Variant.
in Mayo Clinic proceedings
Pozarickij A
(2020)
Non-additive (dominance) effects of genetic variants associated with refractive error and myopia.
in Molecular genetics and genomics : MGG
Prakash SK
(2019)
45,X mosaicism in a population-based biobank: implications for Turner syndrome.
in Genetics in medicine : official journal of the American College of Medical Genetics
Prasad B
(2022)
Data-driven patient stratification of UK Biobank cohort suggests five endotypes of multimorbidity.
in Briefings in bioinformatics
Prats-Uribe A
(2021)
Smoking and COVID-19 Infection and Related Mortality: A Prospective Cohort Analysis of UK Biobank Data.
in Clinical epidemiology
Praveen K
(2022)
Population-scale analysis of common and rare genetic variation associated with hearing loss in adults.
in Communications biology
Praveen K
(2022)
ANGPTL7, a therapeutic target for increased intraocular pressure and glaucoma.
in Communications biology
Prigge R
(2022)
The individual and combined associations of depression and socioeconomic status with risk of major cardiovascular events: A prospective cohort study.
in Journal of psychosomatic research
Prince C
(2022)
The relationships between women's reproductive factors: a Mendelian randomisation analysis.
in BMC medicine
Prins B
(2018)
Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6
in Genome Biology
Prins FM
(2019)
Genetically Determined Physical Activity and Its Association with Circulating Blood Cells.
in Genes
Prisco L
(2021)
Relationship Between Rheumatoid Arthritis and Pulmonary Function Measures on Spirometry in the UK Biobank.
in Arthritis & rheumatology (Hoboken, N.J.)
Privé F
(2020)
Efficient toolkit implementing best practices for principal component analysis of population genetic data.
in Bioinformatics (Oxford, England)
Privé F
(2022)
Using the UK Biobank as a global reference of worldwide populations: application to measuring ancestry diversity from GWAS summary statistics.
in Bioinformatics (Oxford, England)
Privé F
(2022)
Identifying and correcting for misspecifications in GWAS summary statistics and polygenic scores.
in HGG advances
| Description | Impact of clinically silent atrial fibrillation on cerebrovascular disease and cognitive decline in the UK Biobank Imaging Cohort |
| Amount | £2,474,260 (GBP) |
| Funding ID | RG/18/6/33576 |
| Organisation | British Heart Foundation (BHF) |
| Sector | Charity/Non Profit |
| Country | United Kingdom |
| Start | 06/2019 |
| End | 06/2024 |
| Description | UK Biobank - Data Analytics Platform |
| Amount | £20,000,000 (GBP) |
| Organisation | Wellcome Trust |
| Sector | Charity/Non Profit |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 01/2023 |
| Description | UK Biobank - The Repeat Imaging Project |
| Amount | £2,500,000 (GBP) |
| Funding ID | R39738/CN039 |
| Organisation | MRC Dementias Platform UK |
| Sector | Academic/University |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 01/2023 |
| Description | UK Biobank - Whole genome sequencing of 50,000 UKB participants |
| Amount | £30,000,000 (GBP) |
| Organisation | Medical Research Council (MRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2018 |
| End | 03/2020 |
| Description | UK Biobank- Expansion of the UKB imaging to a 4th centre and repeat imaging assessment of 10,000 participants |
| Amount | £8,500,000 (GBP) |
| Organisation | Medical Research Council (MRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2018 |
| End | 12/2022 |
| Description | Biobank Enhancement |
| Organisation | GlaxoSmithKline (GSK) |
| Country | Global |
| Sector | Private |
| PI Contribution | exome sequencing of 50,000 participants |
| Collaborator Contribution | creating vast amounts of genetic data to be used by researchers accessing UKBiobank |
| Impact | exome data |
| Start Year | 2017 |
| Description | Biobank Enhancement |
| Organisation | Regeneron Pharmaceuticals, Inc. |
| Country | United States |
| Sector | Private |
| PI Contribution | exome sequencing of 50,000 participants |
| Collaborator Contribution | creating vast amounts of genetic data to be used by researchers accessing UKBiobank |
| Impact | exome data |
| Start Year | 2017 |
| Description | Genetic enhancement |
| Organisation | AbbVie Inc |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Alnylam Pharmaceuticals |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | AstraZeneca |
| Country | United Kingdom |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Biogen Idec |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Bristol-Myers Squibb |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | GlaxoSmithKline (GSK) |
| Country | Global |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Pfizer Inc |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Regeneron Pharmaceuticals, Inc. |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Takeda Pharmaceutical Company |
| Department | Takeda Pharmaceuticals U.S.A., Inc. (TPUSA) |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | UK Biobank GP linkage |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Professional Practitioners |
| Results and Impact | UK Biobank event for the General Practice Data for Planing and Research programme (GP linkage). 1,200 attendees |
| Year(s) Of Engagement Activity | 2021 |
| Description | UK Biobank Scientific Conference |
| Form Of Engagement Activity | Participation in an activity, workshop or similar |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Public/other audiences |
| Results and Impact | The UK Biobank Scientific Symposium included presentations about the successes and future plans of the UK Biobank. It took place on 21 June 2018 in London |
| Year(s) Of Engagement Activity | 2018 |
| Description | UK Biobank Scientific Conference 2021 |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Professional Practitioners |
| Results and Impact | The UK Biobank Scientific Conference in 2021 had 3,000 participants from the research community, professional practitioners, media, study particiapnts and other partners. |
| Year(s) Of Engagement Activity | 2021 |
| Description | UK Biobank participant imaging event |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Study participants or study members |
| Results and Impact | UK Biobank for participants of the imaging work |
| Year(s) Of Engagement Activity | 2021 |
| Description | UKBiobank participant events - 2014 - 2019 |
| Form Of Engagement Activity | Participation in an activity, workshop or similar |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Study participants or study members |
| Results and Impact | UKB Biobank participants regularly attend events aimed at informing them about the work being undertaken with their data. Usually, the events last a few hours and include an overview from the chief scientist and two talks from scientists that have used UKB data. From 2014 - 2020 over 4,000 participants have taken part in events in Edinburgh (4), Manchester (4), Nottingham, Leeds, Cardiff (2), Newcastle (5), Glasgow (2), Bristol (2) and Reading(4). They are often over-subscribed and participants leave these events wishing to seek more information and support he programme in new ways (EG in imaging, genome sequencing) |
| Year(s) Of Engagement Activity | 2014,2015,2016,2017,2018,2019 |
| URL | http://www.ukbiobank.ac.uk |