Window into the Mind: Handheld Spectroscopic Eye-safe Device (EyeD) for Neurodiagnostics

Lead Research Organisation: University of Birmingham
Department Name: Chemical Engineering

Abstract

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide, with a high complication rate requiring long-term care, creates prolonged post-traumatic neurological disorders and is potentially fatal with annual socioeconomic cost in the UK of £7.5 Billion per year. While critical decisions affecting treatment must be made rapidly, TBI is notoriously hard to diagnose pre-hospitalisation, sometimes resulting in incorrect patient management. Timely assessment of injury severity is a priority in the correct treatment of TBI patients. However, this is poorly supported by current technologies, which fall short of the diagnostic needs, exhibiting poor-sensitivity, special-handling requirements and complicated, costly procedures.

A non-invasive portable technique to diagnose and monitor TBI and neurodegenerative diseases is proposed, by measuring changes to the optic nerve, visible at the back of the eye. The optic nerve, bathed in cerebrospinal fluid, which is in continuity with the central nervous system, constitutes an optically clear 'window to the brain'. The aim is to develop a portable technology to detect biochemical changes in cerebrospinal fluid in response to brain injury using specialised optical collected using a technique known as Raman spectroscopy. This provides a non-invasive, highly-sensitive method for the detection of biomarkers in the eye, and yet it can be packaged as a low-cost, hand-held device.

For delivering such a sensitive and rapid diagnostic technology, it is crucial to accurately identify these specialised Raman signals originating from different parts of the eye. To tackle these challenges, advanced computational methods, known as "machine learning", will be developed to embrace the 'noise' from the data and enable a generic framework for intelligent diagnosis. Unlike traditional packages, this method will perform data analysis directly in the web browser using cloud technologies as an open-source. Building upon these, this innovative technology will allow TBI measurements to take place at the point-of-care via a non-ionizing scan of the back-of-the-eye to detect biochemical changes without the need for a painful lumbar puncture (to extract the cerebrospinal fluid) or expensive, dangerous radiological scans.

Our prime objective is to deliver a technology offering improved health, more effective patient-care and a better quality of life for patients suffering from neurotrauma. It will be designed for use on-site by doctors and paramedic crews to provide timely and cost-effective diagnosis and triaging and will be used by ambulance trusts, sports organisations, GPs, hospitals and the Ministry of Defence. Rapid diagnosis in the early-clinical phase in a non-invasive, cost-effective way will lay the platform for a range of improvements in personalised medicine and management. Predominantly focussed on timely TBI-detection, our device would allow for better patient triaging, reducing the strain on the healthcare system. In addition to delivering the timely intervention and organised trauma-care to nearly a million individuals nationally, it will decelerate the patients' cognitive decline, reduce in-hospital mortality, save thousands of lives a year, avoid long-term hospital stays, and reduce a major burden on the NHS and the taxpayer.

Publications

10 25 50

publication icon
McCarthy E (2024) Collagen-Electrohydrodynamic Hierarchical Lithography for Biomimetic Photonic Micro-Nanomaterials. in Small (Weinheim an der Bergstrasse, Germany)

publication icon
Harris G (2023) Review: Emerging Eye-Based Diagnostic Technologies for Traumatic Brain Injury. in IEEE reviews in biomedical engineering

 
Description To date, we have met several award objectives including the, successful development of a 3D-printed eye tissue phantom that mimics both the optical characteristics of the eye and proxies for the Raman signatures from the optic nerve and determined Raman modes of validated TBI biomarkers using the tissue phantom. We then progressed with engineering and developing the tailor designed decision support tools using biologically inspired algorithms to classify TBIs from spectral data.
Since the measurement of a Raman spectrum is considerably more difficult than the hyper-spectral or fluorescence imaging, simultaneous acquisition of Raman spectroscopy and white light images has never been done before. Thus, methodologically, the development of our new cutting-edge methods to engineer the ultimate technology push the field far beyond the current state-of-the-art and address the most urgent challenges in the Raman spectroscopy and Neuroengineering areas.

We have also published the findings in leading journals including Science Advances and filed a patent.

Delivery of these objectives will now enable us to provide the necessary evidence towards the subsequent in-vivo testing on human patients and undertake many of the required steps for later certification into a UKCA-marked device and move this to market rapidly following-on the completion.

Ultimately, the current achievements provide major step towards establishing a simple, sensitive technology at the point-of-care, accelerating the translation of this research from the bench-to-frontline patientcare. Whilst building-upon engineering principles at the interface between academic, clinical and industrial activities, we are driving this emerging technological innovation to make a distinctive contribution to achieving successful outcomes through delivery of significant scientific, socioeconomic, clinical and industrial impacts.
Exploitation Route The findings from this research will be taken forward to gain a deeper understanding of the causes of diseases, prevention and treatment of associated processes including, various forms of dementia or post-traumatic brain conditions. Early detection is a crucial step for advancing medical research and pharmacology to improve, expand and better validate new biomarkers of early detection. The outcome of this work will also provide novel tools to generate 3D micro-printed ingredients to be adopted for a variety of research across physical science and engineering communities. In the longer-term, the findings will pivot some of the optical techniques regularly used in standard scanning laser ophthalmoscopes to create a novel platform for addressing an unmet need in rapid, timely neuro-diagnostics and monitoring in pre-clinical settings, which will be the key to enabling early-treatment at the first stages of impairment, crucial to the transformation from symptomatic to disease-modifying therapies. The use of machine learning will provide a decision support tool, to aid diagnosis by expert carers (e.g., sports, physios or paramedics), which will be integrated into a hand-held device with inherent portability, convenience and cost-effectiveness.

Beyond its predicted impact on basic science in the field, it is anticipated to have important implications for clinical contexts. Given the strong activities relevant to these findings (e.g., 'Raman4Clinics'- specifically pooling the European expertise to step forward in the fields of novel, label-free and rapid technologies based on a wide variety of Raman spectroscopies for clinical diagnostics), scope is foreseen for fruitful new synergies towards experimental realisations and broad translational links to gain access to novel measurement and assessment techniques.
Sectors Digital/Communication/Information Technologies (including Software)

Education

Electronics

Healthcare

Pharmaceuticals and Medical Biotechnology

 
Description The emerging economic and societal impacts arising from this award currently include: BENEFITS TO PATIENTS- this project is being delivered by conducting this research in partnership with local hospitals, pre-hospital care providers and sports teams. These have helped to start the process of dissemination to end-users, whilst involving them in strategy and design. To ensure that our new emerging technology is targeted at the most important medical need, clinicians at the QEHB have formed important collaborators in this research programme, who along with our recruited PPIE members, have been inputting into the development and translation of the technology, enabling the design of the various technology components to be optimised and tailored to deliver the greatest benefit to patients. IP PROTECTION- is managed by Birmingham Enterprise (UoBE), UoB's commercial arm, who have been advising on the patent protection of innovations and exploit IP generated within the project. Long-term translation strategy currently being planned and includes information on the EU and UK market assessment, regulatory considerations and business plan. Relationships with key opinion leaders in the field already existing, ensuring the best chance of success. INFLUENCING DECISION MAKERS TO ADOPT THE TECHNOLOGY- Pi has been capitalising on the relationship between the UoB and local hospitals, embodied in the Birmingham Health Partnership, providing a vehicle for the exchange of information and resources, enabling a close partnership with NIHR-Trauma MIC, adjacent to QEHB. Both have been enabling access to staff with expertise in health economics and regulatory issues. This has ensured that the technological solution being delivered by this research programme will progress rapidly through approvals, be affordable in the long run and be relevant to end-users and health professionals. Further, the findings from this award have started to impact the public, private or third/voluntary sectors, etc. as follows, -Open-access publications in high-impact 'gold-standard' scientific and interdisciplinary journals -Presenting at a range of fora, national and international conferences (e.g., SPIE Photonics, IEEE, Neurotrauma, E-MRS etc.), NHS Innovations -Guidelines and standard protocols to define this new field -Public Engagement: to showcase this research and explain its impact on society including engagement through our patient involvement and engagement (PPIE) -Press releases to public media outlets following key milestones, followed by the recent large number of online news releases and interviews with the PI -Social media and annual events to update all stakeholders with progress and identify important topics -Working with PPIE to develop literature and communications outlining this work to attendees in trauma clinics.
Sector Healthcare,Manufacturing, including Industrial Biotechology
Impact Types Societal

Economic

Policy & public services

 
Description Contribution and Citation in Policy Documents by Canadian Agency for Drugs and Technologies in Health
Geographic Reach Multiple continents/international 
Policy Influence Type Citation in other policy documents
Impact This provided the impact of healthcare decision-makers with objective evidence to help make informed decisions about the optimal use of technologies.
 
Description A smart, multi-purpose technology for diagnostics, analytics and drug delivery
Amount £128,567 (GBP)
Funding ID EP/W004593/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 09/2021 
End 12/2023
 
Description Identification of Filamentous Pathogens in Leaves
Amount £18,000 (GBP)
Organisation Scottish Forestry Trust 
Sector Charity/Non Profit
Country United Kingdom
Start 01/2022 
End 10/2025
 
Description Integrated-Optofluidic Device Technology for Timely Detection of Biochemical Hazards: IDTech (Phase 2)
Amount £73,500 (GBP)
Organisation Defence Science & Technology Laboratory (DSTL) 
Sector Public
Country United Kingdom
Start 05/2021 
End 05/2022
 
Description Knowledge Assets Grant Fund - KAGF Project at the Ministry of Defence 'Prototype portable Spectroscopy and Fundus Camera'
Amount £25,000 (GBP)
Organisation University of Birmingham 
Sector Academic/University
Country United Kingdom
Start 03/2022 
End 03/2023
 
Description MRC CiC: 'Detection of moderate to severe traumatic brain injury in the eye'
Amount £59,874 (GBP)
Organisation Medical Research Council (MRC) 
Sector Public
Country United Kingdom
Start 05/2022 
End 06/2023
 
Description Resilient Advanced Portable Integrated Device (RAPID): Towards Development of a Multimodal Technology for Detection of Foodborne Pathogens
Amount £19,700 (GBP)
Organisation British Council 
Sector Charity/Non Profit
Country United Kingdom
Start 02/2022 
End 02/2024
 
Title An implementation of a Kohonen map in JavaScript extended to provide feature extraction and classification 
Description Creation of user-friendly Software for web interface that can be easily accessed from any location, without a need to install or compile a single line of code. 
Type Of Material Physiological assessment or outcome measure 
Year Produced 2021 
Provided To Others? Yes  
Impact By developing and providing both a library and web app available as open source tools, this has addressed the gap of the lack of easily accessible tools, which has previously been cited as a reason for poor adoption of such methods as seen in chemometrics. 
URL https://github.com/cbanbury/kohonen
 
Title Raw Raman data of Mycobacterium bovis BCG, Rhodococcus erythropolis, & Corynebacterium glutamicum 
Description Even in the face of the COVID-19 pandemic, Tuberculosis (TB) continues to be a major public health problem and the 2nd biggest infectious cause of death worldwide. There is, therefore, an urgent need to develop effective TB diagnostic methods, which are cheap, portable, sensitive and specific. Raman spectroscopy is a potential spectroscopic technique for this purpose, however, so far, research efforts have focused primarily on the characterisation of Mycobacterium tuberculosis and other Mycobacteria, neglecting bacteria within the microbiome and thus, failing to consider the bigger picture. It is paramount to characterise relevant Mycobacteriales and develop suitable analytical tools to discriminate them from each other. Herein, through the combined use of Raman spectroscopy and the self-optimising Kohonen index network and further multivariate tools, we have successfully undertaken the spectral analysis of Mycobacterium bovis BCG, Corynebacterium glutamicum and Rhodoccocus erythropolis. This has led to development of a useful tool set, which can readily discern spectral differences between these three closely related bacteria as well as generate a unique spectral barcode for each species. Further optimisation and refinement of the developed method will enable its application to other bacteria inhabiting the microbiome and ultimately lead to advanced diagnostic technologies, which can save many lives. 
Type Of Material Database/Collection of data 
Year Produced 2023 
Provided To Others? Yes  
Impact This has led to the development of a useful toolset, which can readily discern spectral differences between these three closely related bacteria as well as generate a unique spectral barcode for each species. Further optimisation and refinement of the developed method will enable its application to other bacteria inhabiting the microbiome and ultimately lead to advanced diagnostic technologies, which can save many lives. 
URL https://datadryad.org/stash/dataset/doi:10.5061/dryad.dv41ns22t
 
Description Collaboration with Neuro-clinical leads at QEHB 
Organisation Queen Elizabeth Hospital Birmingham Charity (QEHB)
Country United Kingdom 
Sector Charity/Non Profit 
PI Contribution To ensure that we target this new technology at the most important medical need, we established collaboration with clinicians at the Queen Elizabeth Hospital Birmingham (QEHB) who are now widely consulted with regular contact during the project. By these means we are exploring how the design of the various technology components can be optimised and tailored to deliver the greatest benefit to the widest range of patients. Enlisted clinician(s) are inputting into the design, development and translation of the technology, guiding the work and facilitate ethical approvals and engagement with patient groups (PPIE), from representative cohorts.
Collaborator Contribution -Input into the design, development and translation of the proposed technology. -Facilitating engagement with patient and public involvement groups (PPIE), from representative cohorts at all stages of development. -Coordinating the availability of the human bio-samples of patients with confirmed TBI from the QEHB and Human Tissue Biorepository for the initial clinical assessment of the proposed technology - Expediting and coordinating ethical approvals as well as providing input to the clinical overview and patient context of the study.
Impact This is a multi-disciplinary collaboration including clinicians from neurosurgery, ophthalmology and neurosciences. Outputs to date include: Exploration of how the design of the various technology components can be optimised and tailored to deliver the greatest benefit to the widest range of patients. Engagement with PPIE group and a workshop with trauma patients and carers / family with lived experience of neurological trauma, who highlighted the need of new devices, such as the one we are developing, with particular focus on rapid diagnosis to assist triage for the patient and the NHS benefits, particularly valuing the portability, enabling pre-hospital diagnosis without a scan.
Start Year 2021
 
Description NIHR Trauma Management Healthcare Technology Co-operative 
Organisation NIHR Trauma Management MedTech Co-operative
Country United Kingdom 
Sector Public 
PI Contribution The NIHR Trauma Management HTC we collaborate on the development of new PoC technology and in doing so we will provide engineering know-how expertise and facilitate collaborative working with industry. We engage with the partners of the HTC to support the new concepts, to improve the diagnosis for traumatic brain injury.
Collaborator Contribution Provides a range of laboratory and clinical research space including, dedicated in-and-outpatient accommodation, staffed by trained personnel and access to HTA approved tissue biorepository.
Impact Just commenced.
Start Year 2023
 
Description Partnership with Dstl 
Organisation Defence Science & Technology Laboratory (DSTL)
Country United Kingdom 
Sector Public 
PI Contribution We have cemented relationship with DSTL and the MoD, centered around the development of point-of-care devices that could be deployed at home or on the battlefield. Via close interaction and planned secondments at Porton Down and the technological advances being developed during this project will help accelerate the development of clinically relevant systems through.
Collaborator Contribution This has attracted an inward investment and co-funding for research and knowledge-exchange activities of total of £30,000 in cash and £250,000 in-kind, supporting research & innovation and technology prototyping. Close interaction and support through the MoD's IP and knowledge transfer teams.
Impact - A joint publication. This outcome made a profound impact on the research and led to public engagement and outreach participation including, at the 'Think Tank', Birmingham and played a central role in a successful Dstl funded grant (DSTLX-1000098511) which led to 2 additional (Dstl and ESPRC CDT co-funded) PhD studentships. - In-kind support for further funding application. - This strategic partnership with Dstl further provides an infrastructure for the 'pull-through' of the new technology being developed, playing a pivotal role in delivering a new portable and robust technology designed for use on-site by doctors, paramedic crews, ambulance trusts, sports organisations, which will be directly translatable to the military frontline and to the NHS.
Start Year 2021
 
Title TRAUMATIC BRAIN INJURY DETECTION 
Description Apparatus (1) for the non-invasive in-vivo determination of changes in tissue, e.g. the myelination, of the optic nerve (ON) in a biological subject, said apparatus (1) comprising: a laser source (10) for generating an excitation laser beam (b); an optical system including a fundus camera (11) operatively associated with the laser source (10) for use in obtaining a fundus image for illuminating the optic nerve (ON) of a subject with the excitation laser beam (b); a detector (13) operatively associated with the optical system and configured to detect a Raman spectrum from the optic nerve (ON) and/or surrounding cerebral spinal fluid; and a processor provided with a computer program for comparing the detected Raman spectrum to at least one reference spectrum, the reference spectrum may correspond to the myelination of the optic nerve in a normal, healthy subject, for determining the changes in the myelination of the optic nerve of the subject based on the detecting and comparing steps from the Raman spectrum. 
IP Reference WO2021053351 
Protection Patent application published
Year Protection Granted 2021
Licensed No
Impact This is currently in-progress with MoD / Dstl.
 
Title Traumatic brain injury detection 
Description Apparatus for the non-invasive in-vivo determination of changes in tissue, e.g. the myelination, of the optic nerve (ON) in a biological subject, said apparatus comprising: a laser source for generating an excitation laser beam; an optical system including a fundus camera operatively associated with the laser source for use in obtaining a fundus image for illuminating the optic nerve (ON) of a subject with the excitation laser beam; a detector (13) operatively associated with the optical system and configured to detect a Raman spectrum from the optic nerve (ON) and/or surrounding cerebral spinal fluid; and a processor provided with a computer program for comparing the detected Raman spectrum to at least one reference spectrum. The reference spectrum may correspond to the myelination of the optic nerve in a normal, healthy subject, for determining the changes in the myelination of the optic nerve of the subject based on the detecting and comparing steps from the Raman spectrum. 
IP Reference US20220338788A1 
Protection Patent / Patent application
Year Protection Granted 2023
Licensed No
Impact Major MoD / Ploughsrae investment funding of 31.8M is currently under negotiation for further spin-out / licensing of the technology being developed.
 
Description BBS Award Lecture/Biophysics Week Webinar 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact BBS Award Lecture/Biophysics Week Webinar, 21st March 2023.
Year(s) Of Engagement Activity 2023
 
Description Contribution to widening participation and schools outreach for better understanding of the discipline 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Schools
Results and Impact The team has been actively given talks on research and science and careers for school pupils.
We have taken an active part in interactive events as part of STEM engagement activities at school demonstrations, assemblies, and career days.
Pupils on individual level and organizers reported great interest, increased TBI awareness and the overall activities encouraged the next generation to study science and Engineering.
Year(s) Of Engagement Activity 2021,2022
 
Description MacRobert Award Panel 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Industry/Business
Results and Impact This panel discussion included former winners of the prestigious MacRobert Award for UK engineering innovation, looking at how we can create a hospitable environment for engineering and what some of the next revolutionary developments might be.
Year(s) Of Engagement Activity 2022
 
Description Plenary talk at the 2nd Global Summit on Brain Disorders and therapeutics 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Webinar hosted by Conference series LLC LTD.

Talk sparked a through discussion afterwards, laying the platform to creation of new linkages with clinicians.
Year(s) Of Engagement Activity 2022
 
Description Public Outreach and PPIE Group 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact Engaging with public is an essential element of our research activities, where public and patient perception are extremely important in gaining acceptance or enthusiasm for this new technology. Our team has a strong commitment to public and patient engagement, targeting a variety of audiences to give insights into my research, explaining its impact on society and increase awareness of neurological injuries. To date, we have organised and run (in-person and online) events to share the aims, progress, technical and clinical feasibility of research developments, working closely with PPIE, consisting of trauma patients and carers/family with lived experience of neurological trauma, who highlighted the need of new devices, such as these we are developing, with particular focus on rapid diagnosis to assist triage for the patient and the NHS benefits, particularly valuing the portability, enabling pre-hospital diagnosis without a scan.
Year(s) Of Engagement Activity 2021,2022
 
Description SPIE Optics and Photonics 2022, San Diego 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XX, part of SPIE Nanoscience + Engineering, https://spie.org/OP103.

Audience reported interest in this subject. PDRA won third place poster prize.
Year(s) Of Engagement Activity 2022
 
Description The Academic Department of Military Surgery and Trauma (ADMST) and Defence Science and Technology Laboratory (Dstl) Inaugural Defence Surgical Research conference 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Industry/Business
Results and Impact The Academic Department of Military Surgery and Trauma (ADMST) and Defence Science and Technology Laboratory (Dstl) Inaugural Defence Surgical Research conference - provided an important networking event and discussion about the technology being developed, creating further collaborative possibilities.
Year(s) Of Engagement Activity 2022
 
Description UK-Israel Science Days, London 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Policymakers/politicians
Results and Impact The Science days celebrated the achievements of UK-Israel scientific collaboration in a series of high profile events in the UK. Activities included an evening gala reception, meetings with partners, workshops and more, and hosted participants from academia, philanthropy and government.
Year(s) Of Engagement Activity 2023