DiRAC 2.5 Operations 2017-2020

Lead Research Organisation: University of Leicester
Department Name: Physics and Astronomy

Abstract

Physicists across the astronomy, nuclear and particle physics communities are focussed
on understanding how the Universe works at a very fundamental level. The distance scales
with which they work vary by 50 orders of magnitude from the smallest distances probed
by experiments at the Large Hadron Collider, deep within the atomic
nucleus, to the largest scale galaxy clusters discovered out in space. The Science challenges,
however, are linked through questions such as: How did the Universe begin and how is it evolving?
and What are the fundamental constituents and fabric of the Universe and how do they interact?

Progress requires new astronomical observations and experimental data but also
new theoretical insights. Theoretical understanding comes increasingly from large-scale
computations that allow us to confront the consequences of our theories very accurately
with the data or allow us to interrogate the data in detail to extract information that has
impact on our theories. These computations test the fastest computers that we have and
push the boundaries of technology in this sector. They also provide an excellent
environment for training students in state-of-the-art techniques for code optimisation and
data mining and visualisation.

The DiRAC-2.5 project builds on the success of the DiRAC HPC facility and will provide the resources needed
to support cutting edge research during 2017 in all areas of science supported by STFC.

In addition to the existing DiRAC-2 services, from April 2017 DiRAC-2.5 will provide:

1) A factor 2 increase in the computational power of the DiRAC supercomputer at the University of Durham, which is designed for simulations requiring large amounts of computer memory. The enhanced system will be used to:
(i) simulate the merger of pairs of black holes which generate gravitational waves such as those recently discovered by the LIGO consortium;
(ii) perform the most realistic simulations to date of the formation and evolution of galaxies in the Universe
(iii) carry out detailed simulations of the interior of the sun and of planetary interiors.

2) A new High Performance Computer at Cambridge whose particular architecture is well suited to the theoretical
problems that we want to tackle that utilise large amounts of data, either as input or
being generated at intermediate stages of our calculations. Two key challenges
that we will tackle are those of
(i) improving our understanding of the Milky Way through analysis of new data from the European
Space Agency's GAIA satellite and
(ii) improving the potential of experiments at CERN's Large Hadron Collider for discovery
of new physics by increasing the accuracy of theoretical predictions for rare processes involving the
fundamental constituents of matter known as quarks.

3) An additional 3500 compute cores on the DiRAC Complexity supercomputer at Leicester which will make it possible to
carry out simulations of some of the most complex physical situation in the Universe. These include:
(i) the formation of stars in clusters - for the first time it will be possible to follow the formation of stars many times more massive than the sun;
(ii) the accretion of gas onto supermassive black holes, the most efficient means of extracting energy from matter and the engine
which drives galaxy formation and evolution.

4) A team of three research software engineers who will help DiRAC researchers to ensure their scientific codes to extract
the best possible performance from the hardware components of the DiRAC clusters. These highly skilled programmers will
increase the effective computational power of the DiRAC facility during 2017.

Planned Impact

The expected impact of the DiRAC 2.5 HPC facility is fully described in the attached pathways to impact document and includes:

1) Disseminating best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.

2) Working on co-design projects with industry partners to improve future generations of hardware and software.

3) Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use this new technology to improve research outcomes in their areas.

4) Share best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners.

5) Training of the next generation of research scientists of physical scientists to tackle problems effectively on state-of-the-art of High Performance Computing facilities. Such skills are much in demand from high-tech industry.

6) Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.

Publications

10 25 50
publication icon
Glowacki M (2021) The redshift evolution of the baryonic Tully-Fisher relation in SIMBA in Monthly Notices of the Royal Astronomical Society

publication icon
Glowacki M (2020) The baryonic Tully-Fisher relation in the simba simulation in Monthly Notices of the Royal Astronomical Society

publication icon
Golightly E (2019) Tidal Disruption Events: The Role of Stellar Spin in The Astrophysical Journal

publication icon
Gonzalez-Perez V (2020) Do model emission line galaxies live in filaments at z ~ 1? in Monthly Notices of the Royal Astronomical Society

publication icon
Gorman M (2019) ExoMol molecular line lists XXXVI: X 2? - X 2? and A 2S+ - X 2? transitions of SH in Monthly Notices of the Royal Astronomical Society

publication icon
Gourgouliatos K (2019) Nonaxisymmetric Hall instability: A key to understanding magnetars in Physical Review Research

publication icon
Gourgouliatos K (2018) Relativistic centrifugal instability in Monthly Notices of the Royal Astronomical Society: Letters

publication icon
Goyal J (2020) A library of self-consistent simulated exoplanet atmospheres in Monthly Notices of the Royal Astronomical Society

publication icon
Goyal J (2019) Fully scalable forward model grid of exoplanet transmission spectra in Monthly Notices of the Royal Astronomical Society

publication icon
Grand R (2020) The biggest splash in Monthly Notices of the Royal Astronomical Society

publication icon
Gration A (2019) Dynamical modelling of dwarf spheroidal galaxies using Gaussian-process emulation in Monthly Notices of the Royal Astronomical Society

publication icon
Gratton S (2020) Understanding parameter differences between analyses employing nested data subsets in Monthly Notices of the Royal Astronomical Society

publication icon
Gray M (2019) Maser flare simulations from oblate and prolate clouds in Monthly Notices of the Royal Astronomical Society

publication icon
Gray M (2020) Analysis of methanol maser flares in G107.298+5.63 and S255-NIRS3 in Monthly Notices of the Royal Astronomical Society: Letters

publication icon
Griffin A (2019) The evolution of SMBH spin and AGN luminosities for z < 6 within a semi-analytic model of galaxy formation in Monthly Notices of the Royal Astronomical Society

publication icon
Griffin A (2020) AGNs at the cosmic dawn: predictions for future surveys from a ?CDM cosmological model in Monthly Notices of the Royal Astronomical Society

publication icon
Grisdale K (2019) On the observed diversity of star formation efficiencies in Giant Molecular Clouds in Monthly Notices of the Royal Astronomical Society

publication icon
Grisdale K (2021) Physical properties and scaling relations of molecular clouds: the impact of star formation in Monthly Notices of the Royal Astronomical Society

publication icon
Gu Q (2022) The spatial distribution of satellites in galaxy clusters in Monthly Notices of the Royal Astronomical Society

publication icon
Guandalin C (2021) Observing relativistic features in large-scale structure surveys - I. Multipoles of the power spectrum in Monthly Notices of the Royal Astronomical Society

publication icon
Gupta P (2022) A study of global magnetic helicity in self-consistent spherical dynamos in Geophysical & Astrophysical Fluid Dynamics

publication icon
Gurung-López S (2019) Lya emitters in a cosmological volume II: the impact of the intergalactic medium in Monthly Notices of the Royal Astronomical Society

publication icon
Gurung-López S (2019) Lya emitters in a cosmological volume - I. The impact of radiative transfer in Monthly Notices of the Royal Astronomical Society

publication icon
Gómez J (2022) Halo merger tree comparison: impact on galaxy formation models in Monthly Notices of the Royal Astronomical Society

publication icon
Gómez-Guijarro C (2020) How primordial magnetic fields shrink galaxies in Monthly Notices of the Royal Astronomical Society

publication icon
Gülpers V. (2018) Isospin breaking corrections to the HVP at the physical point in Proceedings of Science

 
Description Many new discoveries about the formation and evolution of galaxies, star formation and planet formation have been made possible by this award.
Exploitation Route Many international collaborative projects are supported by the HPC resources provided by DiRAC.
Sectors Aerospace, Defence and Marine,Creative Economy,Digital/Communication/Information Technologies (including Software),Education,Healthcare,Transport

URL http://www.dirac.ac.uk