Distributed Exploration and Exploitation with Passive RF sensors

Lead Research Organisation: University of Liverpool
Department Name: Computer Science

Abstract

This PhD will develop cooperative guidance and navigation methods to allow small formations of Uninhabited Air Vehicles (UAVs) to investigate and explore otherwise ill-defined regions while employing passive RF sensors (i.e. providing only angle of arrival and signal-strength measurements) - providing both contextual information (what?) and localisation information (where?).

Current UAVs tend to be directly controlled by an operator or to fly prescribed, pre-planned routes. With recent improvements in processing speed and artificial intelligence, it is likely that future UAVs will have more flexibility and provide a degree of coordination and cooperation within an overall defined mission. Such automated control of UAVs will be significantly enhanced by the ability to share identification and position information across platforms, particularly for the case of Passive RF sensors where individual measurements are ambiguous. It will allow a top-level requirement to be fixed by an operator whilst permitting the UAVs a degree of flexibility to allocate resources appropriately to meet this requirement.

The key challenges in this work are in the efficient prioritisation of the individual tasks required to meet the overarching mission requirement, the high degree of uncertainty associated with the abilities of the sensors, and the optimisation of the scheduling of these tasks, which may include different sensor capabilities The choice of scenarios considered, the properties of the UAVs, and the task requirements will be developed in collaboration with the industrial partner, MBDA.

Planned Impact

This CDT's focus on using "Future Computing Systems" to move "Towards a Data-driven Future" resonates strongly with two themes of non-academic organisation. In both themes, albeit for slightly different reasons, commodity data science is insufficient and there is a hunger both for the future leaders that this CDT will produce and the high-performance solutions that the students will develop.

The first theme is associated with defence and security. In this context, operational performance is of paramount importance. Government organisations (e.g., Dstl, GCHQ and the NCA) will benefit from our graduates' ability to configure many-core hardware to maximise the ability to extract value from the available data. The CDT's projects and graduates will achieve societal impact by enabling these government organisations to better protect the world's population from threats posed by, for example, international terrorism and organised crime.

There is then a supply chain of industrial organisations that deliver to government organisations (both in the UK and overseas). These industrial organisations (e.g., Cubica, Denbridge Marine, FeatureSpace, Leonardo, MBDA, Ordnance Survey, QinetiQ, RiskAware, Sintela, THALES (Aveillant) and Vision4ce) operate in a globally competitive marketplace where operational performance is a key driver. The skilled graduates that this CDT will provide (and the projects that will comprise the students' PhDs) are critical to these organisations' ability to develop and deliver high-performance products and services. We therefore anticipate economic impact to result from this CDT.

The second theme is associated with high-value and high-volume manufacturing. In these contexts, profit margins are very sensitive to operational costs. For example, a change to the configuration of a production line for an aerosol manufactured by Unilever might "only" cut costs by 1p for each aerosol, but when multiplied by half a billion aerosols each year, the impact on profit can be significant. In this context, industry (e.g., Renishaw, Rolls Royce, Schlumberger, ShopDirect and Unilever) is therefore motivated to optimise operational costs by learning from historic data. This CDT's graduates (and their projects) will help these organisations to perform such data-driven optimisation and thereby enable the CDT to achieve further economic impact.

Other organisations (e.g., IBM) provide hardware, software and advice to those operating in these themes. The CDT's graduates will ensure these organisations can be globally competitive.

The specific organisations mentioned above are the CDT's current partners. These organisations have all agreed to co-fund studentships. That commitment indicates that, in the short term, they are likely to be the focus for the CDT's impact. However, other organisations are likely to benefit in the future. While two (Lockheed Martin and Arup) have articulated their support in letters that are attached to this proposal, we anticipate impact via a larger portfolio of organisations (e.g., via studentships but also via those organisations recruiting the CDT's graduates either immediately after the CDT or later in the students' careers). Those organisations are likely to include those inhabiting the two themes described above, but also others. For example, an entrepreneurial CDT student might identify a niche in another market sector where Distributed Algorithms can deliver substantial commercial or societal gains. Predicting where such niches might be is challenging, though it seems likely that sectors that are yet to fully embrace Data Science while also involving significant turn-over are those that will have the most to gain: we hypothesise that niches might be identified in health and actuarial science, for example.

As well as training the CDT students to be the leaders of tomorrow in Distributed Algorithms, we will also achieve impact by training the CDT's industrial supervisors.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023445/1 01/04/2019 30/09/2027
2298149 Studentship EP/S023445/1 01/10/2019 30/09/2023 Theofilos Triommatis