Sonar Systems Use Pressure Wave to Detect an Object in Maritime Domain

Lead Research Organisation: University of Glasgow
Department Name: School of Engineering

Abstract

Sonar Systems Use Pressure Wave to Detect an Object in Maritime Domain Ultrasonic technologies are used to detect acoustic signals such as those in the maritime domain (sonar systems), during NDT/E inspections or in medical diagnostic procedures contain various electronics building blocks. For instance, the acoustic sensor, which can be often based on piezoelectric or capacitive micromachined ultrasonic transducer (PMUT or CMUT) technologies, converts the detected pressure wave into an electrical signal before electronics amplify, filter, and digitise this signal, which is then processed and an image of the object under detection is projected to the operator. The demand on the next generation of ultrasonic sensor systems increasingly requires them to be contained within a smaller footprint and possess lower power demands while exhibiting enhanced detection capability. The electronics used in these systems are typically based on printed circuit board (PCB) technologies which can have a large footprint and high-power demands which may require additional infrastructure to prevent overheating. This project will investigate the development of ultralow-power millimetre-sized integrated electronics, referred to as system-on-chip (SoC), for incorporation into compact acoustic sensors for use in the maritime domain, where payload and power limitations are critical. Integration of SoC with CMOS (complementary metal oxide semiconductor) technology will allow the implementation of a wide range of acoustic sensors for a spectrum of sensing and imaging applications where high fill factors, good signal to noise ratio, small size and low power consumption are fundamental to operational success. This project will explore the miniaturisation of low power electronics which are compatible for CMUT-based sensors deployed in the maritime domain. Its provisional objectives are Form a fundamental understanding of design and fabrication techniques used in the development of milli-metre sized electronics (using integrated CMOS technology). Design different circuit blocks e.g. the power management unit, analogue front end consists of low noise amplifier (LNA), low pass filter, digitization backend (e.g. ADC) and circuitry techniques for ripple cancellation. CMOS-Acoustic device integration techniques e.g. monolithically or flip-chip technology Explore the main trade-offs and main contributors to circuit; power consumption, noise generation, operational bandwidth and dynamic range, and prototype candidate solutions. Form a fundamental understanding of sonar, underwater detection and the maritime environment. Demonstrate candidate(s) sonar transducers in a representative environment. For instance, at a Thales UK facility. The project will be conducted in the Microelectronics Lab at the Centre for Medical and Industrial Ultrasonic (CMIU). It will give full knowledge of ultrasonics, electronics design, PCB design, IC integration circuit, control system, programming that will build ultrasonic SOC system.

Planned Impact

FUSE has been designed to maximise impact in partnership with industry, international academics, and other organisations such as NPL and the NHS. It includes funded mechanisms to deal with opportunities in equality, diversity and integration (EDI) and in realisation of impactful outcomes.

EDI is aimed at realising the full potential of the talented individuals that join FUSE. Funding mechanisms include support for ten undergraduate internships to prime the pipeline into FUSE research studentships; part-time studentships reserved for people with specific needs to access this route; and talent scholarships for people from Widening Participation backgrounds. Additionally, cultural issues will be addressed through funded support for work life-balance activities and for workshops exploring the enhancement of research creativity and inventiveness through diversity.

People: As a community, FUSE will contribute to impact principally through its excellent training of outstanding people. At least 54 EngD and PhD graduates will emerge with very high value skills from the experience FUSE will provide in ultrasonics and through highly relevant professional skills. This will position them perfectly as future leaders in ultrasonics in the types of organisation represented by the partners.

Knowledge: FUSE will also create significant knowledge which will be captured in many different forms including industrial know-how, patents and processes, designs, and academic papers. Management of this knowledge will be integrated into the students' training, including data management and archival, and will be communicated effectively to those in positions to exploit it.

Economic Gain: In turn, the people and knowledge will lead to the economic impact that FUSE is ultimately designed to generate. The close interaction between the FUSE academics, its research students and industry partners will make it particularly efficient and, since FUSE includes both suppliers and customers, the transition from knowledge creation to exploitation will be accelerated.

Societal Benefit: FUSE is well placed to deliver a number of societal benefits which will reinforce our researcher training and external partner impacts. This activity encompasses new consumer products; improved public safety through advanced inspection across many industrial sectors; and new modalities for medical surgery and therapy. In addition, FUSE will provide engaging demonstrators to promote education in science, technology, engineering and maths, helping replenish the FUSE pipeline and supporting growth of the FUSE community far beyond its immediate members.

Impactful outcomes will gain from several specific funding mechanisms: horizon scanning workshops will focus on specific ultrasonic engineering application areas with industrial and other external participation; all FUSE students will have external partners and both industrial and international academic secondments will be arranged, as well as EngD studentships primarily in industry; and industry case studies will be considered. There will also be STEM promotion activity, funding ultrasonic technology demonstrators to support school outreach and public science and engineering events.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023879/1 30/06/2019 31/12/2027
2446569 Studentship EP/S023879/1 13/09/2020 12/09/2024 Mohamed Abdalla