Sub-THz Radar sensing of the Environment for future Autonomous Marine platforms (STREAM)

Lead Research Organisation: University of St Andrews
Department Name: Physics and Astronomy


This PhD will complement the 3.5 year STREAM project, a £1.5M EPSRC funded collaboration between the University of St Andrews and the University of Birmingham. STREAM aims to develop advanced sub-THz radar systems that will enable true autonomy for marine systems, by providing situational awareness in a dynamic sea environment and obscuring conditions

Research on autonomous ground vehicles, guided by various sensors (lidar, acoustic, radar), has existed for many decades and the technology is now relatively mature. In contrast, research in autonomous operation in the marine environment is less mature but evolving rapidly. The key enabler will be the role of advanced electronics to provide vessels with full intelligence to facilitate autonomous operation with sensing and processing capabilities superior to those of a human.

The requirements for sensing capabilities to provide situational awareness to small and medium vessels in the dynamic marine environment include (i) maintaining safety of the boat and humans and animals in the water which requires the robust all-weather day/night detection and classification of objects in the water and (ii) adaptive path planning which requires wave profiling of the local sea surface and the detection of hazardous large waves. We assert that the key sensor modality to satisfy these requirements is novel sub-THz radar operating in the 140-340 GHz frequency spectrum. Sub-THz radar offers the advantages of a very high-resolution sensing with very compact sensors and the ability to penetrate obscuring conditions. Such radars will be able to measure a range of parameters from the sea surface and objects within it including range, cross-range, bulk Doppler, micro-Doppler and radar cross section (RCS). This information can then be processed to detect, track and classify objects in the scene and provide information to decision making tools used in the control of autonomous vessels.

During this PhD the candidate will collaborate very closely with the wider research team of colleagues in the Sea Mammal Research Unit at St Andrews and in the Microwave Integrated Systems Laboratory (MISL) at the University of Birmingham, plus our broad range of industrial Project Partners who are supporting the project.

The research will focus strongly on the field collection of radar data at maritime locations around the UK during multiple field trips - currently there is an almost complete lack of data on sub-THz properties of the marine environment so a primary aim of the project is to collect extensive data sets. Based on these data sets, research tasks will include:

Modelling and analysis of sub-THz sea clutter
Modelling and analysis scattering from objects in the sea including sea mammals
Modelling and analysis of atmospheric propagation effects in the marine boundary layer
Development of signal processing algorithms for detection & tracking
Development of image analysis and classification methods
Investigation of adaptive waveform design suitable for cognitive radar operation


10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/T518062/1 01/10/2020 30/09/2025
2458650 Studentship EP/T518062/1 26/09/2020 29/02/2024 Aleksanteri Vattulainen