Optimized Sampling Approaches for Compressive Sensing in Multi-Dimensional Datastreams

Lead Research Organisation: University of Liverpool
Department Name: Electrical Engineering and Electronics

Abstract

The current state-of-the-art in imaging hardware involves the very precise synthesis and fabrication of semiconducting materials into extended cameras that can now contain up to 64M pixels with a cost that can exceed £1M per device. In most cases, these high sensitivity cameras are implemented to detect signals that are very close to the noise level and as an added complexity are typically looking to characterise dynamic events (i.e. they need to be able to quantify the motion of fast moving objects). The data per image frame in these systems can easily exceed 1TB, meaning that cameras currently have to operate in short bursts, have delayed responses due to the extended transfer of the data, and it can take days/months/years for image analytics to operate and identify key elements in the datastream. Obviously as the global economy pushes towards more automation and the use of remote sensing devices, these limitations have to be overcome.
One approach that can alleviate a large number of the problems associated with speed and precision in state-of-the-art imaging systems, is the use of Compressive Sensing (CS) methods. In the CS approach, a small subset of random pixels in the image in acquired and used to reconstruct the full dataset. This immediately reduces the amount of data and increases the imaging speed by the amount of sub-sampling that is used. The goal of this PhD project is to determine the level of sub-sampling that be used to reconstruct images from such diverse sources as satellites, night vision goggles and scanning transmission electron microscopes. By developing and implementing new algorithms for the specifics of the image contrast mechanism and its resolution limits, the goal is to develop a coherent framework that can be used in the design of optimized imaging hardware with embedded algorithms.

Planned Impact

This CDT's focus on using "Future Computing Systems" to move "Towards a Data-driven Future" resonates strongly with two themes of non-academic organisation. In both themes, albeit for slightly different reasons, commodity data science is insufficient and there is a hunger both for the future leaders that this CDT will produce and the high-performance solutions that the students will develop.

The first theme is associated with defence and security. In this context, operational performance is of paramount importance. Government organisations (e.g., Dstl, GCHQ and the NCA) will benefit from our graduates' ability to configure many-core hardware to maximise the ability to extract value from the available data. The CDT's projects and graduates will achieve societal impact by enabling these government organisations to better protect the world's population from threats posed by, for example, international terrorism and organised crime.

There is then a supply chain of industrial organisations that deliver to government organisations (both in the UK and overseas). These industrial organisations (e.g., Cubica, Denbridge Marine, FeatureSpace, Leonardo, MBDA, Ordnance Survey, QinetiQ, RiskAware, Sintela, THALES (Aveillant) and Vision4ce) operate in a globally competitive marketplace where operational performance is a key driver. The skilled graduates that this CDT will provide (and the projects that will comprise the students' PhDs) are critical to these organisations' ability to develop and deliver high-performance products and services. We therefore anticipate economic impact to result from this CDT.

The second theme is associated with high-value and high-volume manufacturing. In these contexts, profit margins are very sensitive to operational costs. For example, a change to the configuration of a production line for an aerosol manufactured by Unilever might "only" cut costs by 1p for each aerosol, but when multiplied by half a billion aerosols each year, the impact on profit can be significant. In this context, industry (e.g., Renishaw, Rolls Royce, Schlumberger, ShopDirect and Unilever) is therefore motivated to optimise operational costs by learning from historic data. This CDT's graduates (and their projects) will help these organisations to perform such data-driven optimisation and thereby enable the CDT to achieve further economic impact.

Other organisations (e.g., IBM) provide hardware, software and advice to those operating in these themes. The CDT's graduates will ensure these organisations can be globally competitive.

The specific organisations mentioned above are the CDT's current partners. These organisations have all agreed to co-fund studentships. That commitment indicates that, in the short term, they are likely to be the focus for the CDT's impact. However, other organisations are likely to benefit in the future. While two (Lockheed Martin and Arup) have articulated their support in letters that are attached to this proposal, we anticipate impact via a larger portfolio of organisations (e.g., via studentships but also via those organisations recruiting the CDT's graduates either immediately after the CDT or later in the students' careers). Those organisations are likely to include those inhabiting the two themes described above, but also others. For example, an entrepreneurial CDT student might identify a niche in another market sector where Distributed Algorithms can deliver substantial commercial or societal gains. Predicting where such niches might be is challenging, though it seems likely that sectors that are yet to fully embrace Data Science while also involving significant turn-over are those that will have the most to gain: we hypothesise that niches might be identified in health and actuarial science, for example.

As well as training the CDT students to be the leaders of tomorrow in Distributed Algorithms, we will also achieve impact by training the CDT's industrial supervisors.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023445/1 01/04/2019 30/09/2027
2599531 Studentship EP/S023445/1 01/10/2021 01/07/2023 Jack Taylor