New Chelators for Less-Developed and 'Heavy' Radioactive Metal Isotopes

Lead Research Organisation: Imperial College London
Department Name: Chemistry

Abstract

This project will feature the chelate design and synthesis of a range of radionuclides for which previously very little ligand chemistry has been developed, and are situated towards the lower end of the periodic table e.g. 223Ra, 212Pb, 225Ac, 213Bi and 227Th. These radio isotopes offer a range of imaging, diagnostic and therapeutic properties which have currently been underutilised by the lack of suitable chelators, and the lack of availability of the radioisotopes themselves. Many of these metals have been utilised in their simple halide, nitrate or hydroxide compound state, but there is a real dearth of stable chelate complexes known in the literature. In this project, the student will prepare a range of macrocyclic 'crown' ligands featuring a range of donor heteroatoms either within the ring system or as pendant groups, which can enable a tailoring of the 'hard-soft' nature of the radiometals. The most promising chelators will be chosen to take forward for bioconjugation to a peptide or antibody, and subjected to a range of radiolabelling, in vitro and in vivo experiments to evaluate the biological efficacy of these new, targeted radiotracers. The synthetic chemistry will be carried out at Imperial College, whilst radiolabelling biological experiments will be undertaken at King's College and via collaborators at the National Nuclear Laboratory.

Planned Impact

Strains on the healthcare system in the UK create an acute need for finding more effective, efficient, safe, and accurate non-invasive imaging solutions for clinical decision-making, both in terms of diagnosis and prognosis, and to reduce unnecessary treatment procedures and associated costs. Medical imaging is currently undergoing a step-change facilitated through the advent of artificial intelligence (AI) techniques, in particular deep learning and statistical machine learning, the development of targeted molecular imaging probes and novel "push-button" imaging techniques. There is also the availability of low-cost imaging solutions, creating unique opportunities to improve sensitivity and specificity of treatment options leading to better patient outcome, improved clinical workflow and healthcare economics. However, a skills gap exists between these disciplines which this CDT is aiming to fill.

Consistent with our vision for the CDT in Smart Medical Imaging to train the next generation of medical imaging scientists, we will engage with the key beneficiaries of the CDT: (1) PhD students & their supervisors; (2) patient groups & their carers; (3) clinicians & healthcare providers; (4) healthcare industries; and (5) the general public. We have identified the following areas of impact resulting from the operation of the CDT.

- Academic Impact: The proposed multidisciplinary training and skills development are designed to lead to an appreciation of clinical translation of technology and generating pathways to impact in the healthcare system. Impact will be measured in terms of our students' generation of knowledge, such as their research outputs, conference presentations, awards, software, patents, as well as successful career destinations to a wide range of sectors; as well as newly stimulated academic collaborations, and the positive effect these will have on their supervisors, their career progression and added value to their research group, and the universities as a whole in attracting new academic talent at all career levels.

- Economic Impact: Our students will have high employability in a wide range of sectors thanks to their broad interdisciplinary training, transferable skills sets and exposure to industry, international labs, and the hospital environment. Healthcare providers (e.g. the NHS) will gain access to new technologies that are more precise and cost-efficient, reducing patient treatment and monitoring costs. Relevant healthcare industries (from major companies to SMEs) will benefit and ultimately profit from collaborative research with high emphasis on clinical translation and validation, and from a unique cohort of newly skilled and multidisciplinary researchers who value and understand the role of industry in developing and applying novel imaging technologies to the entire patient pathway.

- Societal Impact: Patients and their professional carers will be the ultimate beneficiaries of the new imaging technologies created by our students, and by the emerging cohort of graduated medical imaging scientists and engineers who will have a strong emphasis on patient healthcare. This will have significant societal impact in terms of health and quality of life. Clinicians will benefit from new technologies aimed at enabling more robust, accurate, and precise diagnoses, treatment and follow-up monitoring. The general public will benefit from learning about new, cutting-edge medical imaging technology, and new talent will be drawn into STEM(M) professions as a consequence, further filling the current skills gap between healthcare provision and engineering.

We have developed detailed pathways to impact activities, coordinated by a dedicated Impact & Engagement Manager, that include impact training provision, translational activities with clinicians and patient groups, industry cooperation and entrepreneurship training, international collaboration and networks, and engagement with the General Public.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022104/1 01/10/2019 31/03/2028
2741285 Studentship EP/S022104/1 01/10/2022 30/09/2026 Poppy Tobolski