Integration of RF Circuits with High Speed GaN Switching on Silicon Substrates

Lead Research Organisation: University of Cambridge
Department Name: Materials Science & Metallurgy

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Publications

10 25 50
 
Description The work on the growth of nitride high electron mobility transistors on silicon during this award has greatly enhanced our understanding of the mechanisms controlling strain in such devices. This will help us, in future, to develop growth methods which allow the wafer to remain flat (which is important for wafer processing) whilst growing thick layers which tend to introduce strain into the system and bow it into a non-flat shape. We have also increased understanding of the mechanisms which control the film and the substrate conductivity post-growth, which is vital to aid understanding of the device electrical performance.
Exploitation Route The robust growth methods we are developing may be adopted by our industrial partners for commercial devices. Materials grown by these methods are also broadly available to the UK community via the EPSRC National Epitaxy Facility.
Sectors Digital/Communication/Information Technologies (including Software)

Electronics

 
Description DCMS: Compound Semiconductors: Industry & Academia Roundtable
Geographic Reach National 
Policy Influence Type Participation in a guidance/advisory committee
 
Description EPSRC-Innovate UK Semiconductor Technology Roundtable
Geographic Reach National 
Policy Influence Type Participation in a guidance/advisory committee
 
Description EPSRC/Innovate UK Semiconductor Roundtable
Geographic Reach National 
Policy Influence Type Contribution to a national consultation/review
 
Description FCDO UK Semiconductor Sector Visit to Washington DC
Geographic Reach Multiple continents/international 
Policy Influence Type Contribution to a national consultation/review
 
Description FCDO/DSIT Semiconductor Delegation to Washington
Geographic Reach Multiple continents/international 
Policy Influence Type Contribution to a national consultation/review
 
Description Institute of Physics / Royal Academy of Engineering Roundtable: UK Semiconductor Challenges and Solutions
Geographic Reach National 
Policy Influence Type Contribution to a national consultation/review
URL https://raeng.org.uk/media/2hmbvzke/0402_semi-conductor-report_v2.pdf
 
Description RAEng - Quantum Infrastructure Review - Working Group
Geographic Reach National 
Policy Influence Type Contribution to a national consultation/review
 
Description Royal Academy of Engineering: Exploring the UK semiconductor innovation system workshop
Geographic Reach National 
Policy Influence Type Contribution to a national consultation/review
URL https://raeng.org.uk/media/rm1hck2o/raeng-exploring-the-uk-semiconductor-innovation-system.pdf
 
Description eFutures DSIT Semiconductors Project Advisory Group
Geographic Reach National 
Policy Influence Type Contribution to a national consultation/review
 
Description A National Research Facility for Epitaxy
Amount £12,250,478 (GBP)
Funding ID EP/X015300/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 05/2022 
End 06/2027
 
Title Research data supporting "Nano-cathodoluminescence reveals the effect of electron damage on the optical properties of nitride optoelectronics and the damage threshold" 
Description Data corresponding to the figures 1, 2, 4, and 5 in the corresponding manuscript. 
Type Of Material Database/Collection of data 
Year Produced 2016 
Provided To Others? Yes  
URL https://www.repository.cam.ac.uk/handle/1810/260851
 
Title Research data supporting "Scanning capacitance microscopy of GaN-based high electron mobility transistor structures: a practical guide" 
Description The dataset includes data for the associated article, encompassing the scanning capacitance microscopy (SCM), scanning capacitance spectroscopy (SCS), and mercury CV data related to the GaN-based high electron mobility transistor (HEMT) structures. The SCM and SCS data were acquired using a Bruker Dimension Icon Pro AFM coupled with a Bruker SCM module, saved as '.spm' files viewable with Bruker's NanoScope Analysis software. The mercury CV data was obtained using a mercury probe capacitance-voltage measurement system from Materials Development Corporation, stored as a text file importable to data analysis software like Origin. 
Type Of Material Database/Collection of data 
Year Produced 2023 
Provided To Others? Yes  
URL https://www.repository.cam.ac.uk/handle/1810/355790
 
Description Royal Academy of Engineering Critical Conversation 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact In March 2023, semiconductors were listed as the one of 'five technologies that are most critical to the UK' in the government's UK Science and Technology Framework. This online discussion event, hosted by the CEO of the Royal Acdemy of Engineering, explored the latest challenges, and opportunities, with engineers at the forefront of semiconductor research and industry, including Rachel Oliver. A live audience of over 100 watched and it has since been viewed about 300 times on Youtube. As a result of t6his engagement, Rachel was asked to join the eFutures DSIT Semiconductors Project Advisory Group.
Year(s) Of Engagement Activity 2023
URL https://raeng.org.uk/events/2023/september/semiconductors-a-critical-technology-for-a-critical-time
 
Description The Context - interview 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact I was interviewed on "The Context" on the BBC News Channel about the UK Semiconductor Strategy shortly after its publication.
Year(s) Of Engagement Activity 2023